JFIF  x x C         C     "        } !1AQa "q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz        w !1AQ aq"2B #3Rbr{ gilour
const eps = 0.0000000000001; // accepted error const inf = 1000000; // a very high value, used to initialize some variables, useful for calculating the intersections of straight lines // function that checks the order of the polygon peaks function checkOrder(poligon, n) { var i; var order = 0; for (i = 0; i < n; i++) // the sides of the polygon are summed order += poligon[i].lat * poligon[i + 1].lng - poligon[i].lng * poligon[i + 1].lat; if (order > 0) return 1; // anti-thronometric order (meaning clockwise) else return -1; // trigonometric order } // the function receives three points as arguments and verifies its position c with respect to the oriented side ab // return -1 => interior point // return 1 => interior point function sign(a, b, c) { var det = a.lat * b.lng + b.lat * c.lng + c.lat * a.lng - c.lat * b.lng - a.lat * c.lng - b.lat * a.lng; if (Math.abs(det) <= eps) return 1; if (det > eps) return 1; if (det < eps) return -1; } //determines the point of intersection of the rights determined by the points received as parameters function intersect(a, b, c, d) { var a1, b1, c1, a2, b2, c2, X = -inf, Y = -inf; //verificare perpendicularitate if (a.lat === b.lat) X = a.lat; if (c.lat === d.lat) X = c.lat; if (a.lng === b.lng) Y = a.lng; if (c.lng === d.lng) Y = c.lng; // the coefficients of the general equations of the two straight lines are calculated a1 = b.lng - a.lng; b1 = a.lat - b.lat; c1 = a.lng * (a.lat - b.lat) + a.lat * (b.lng - a.lng); a2 = d.lng - c.lng; b2 = c.lat - d.lat; c2 = c.lng * (c.lat - d.lat) + c.lat * (d.lng - c.lng); // the coordinates of the intersection point are calculated if (Y === -inf) Y = (c1 - a1 * c2 / a2) / (b1 - a1 * b2 / a2); if (X === -inf) X = (c1 - Y * b1) / a1; return { lat: X, lng: Y }; } // main function, called from main.js, which will calculate the coordinates of the ends of the drawn polygon core and save them in the 'kernel' list // polygon = polygon tip list, n = number of peaks, kernel = nucleus tip list function getKernel(poligon, n, kernel) { var count = -1; // will count the tips of the nucleus var temp = []; // temporary solution var box = []; // "bounding box", the current solution var m; // temp. meter var order; // identifies the order of the polygon peaks var a, b; // a = indice vf. curent; b = indice vf. urmator var signa, signb; // var folosite pt aflarea pozitionarii unui punct fata de o latura var i, j; poligon[n] = poligon[0]; // pentru a putea parcurge ultima latura order = checkOrder(poligon, n); // determina ordinea in care vor fi parcurse laturile // initializare dreptunghi care include poligonul dat var minlat = poligon[0].lat; var maxlat = poligon[0].lat; var minlng = poligon[0].lng; var maxlng = poligon[0].lng; for (i = 1; i < n; i++) { if (poligon[i].lat < minlat) minlat = poligon[i].lat; if (poligon[i].lat > maxlat) maxlat = poligon[i].lat; if (poligon[i].lng < minlng) minlng = poligon[i].lng; if (poligon[i].lng > maxlng) maxlng = poligon[i].lng; } count = 3; box[0] = { lat: minlat, lng: minlng }; box[1] = { lat: maxlat, lng: minlng }; box[2] = { lat: maxlat, lng: maxlng }; box[3] = { lat: minlat, lng: maxlng }; //terminat initializare dreptunghi for (i = 0; i < n; i++) // se parcurge fiecare latură a poligonului { a = 0; b = 1; m = -1; if (count >= 2) do { signa = sign(poligon[i], poligon[i + 1], box[a]); // verificare pozitionare varf curent fata de latura parcursa signb = sign(poligon[i], poligon[i + 1], box[b]); // verificare pozitionare varf urmator fata de latura parcursa if (signa !== -order && signb !== -order) // ambele in interior temp[++m] = box[b]; // adaugam solutiei punctul urmator if (signa !== -order && signb === -order) // a interior, b exterior temp[++m] = intersect(poligon[i], poligon[i + 1], box[a], box[b]); // adaugam solutiei punctul de intersectie if (signa === -order && signb !== -order) // a exterior, b interior { temp[++m] = intersect(poligon[i], poligon[i + 1], box[a], box[b]); // adaugam punctul de intersectie temp[++m] = box[b]; // adaugam punctul urmator } ++a; if (a > count) a = 0; ++b; if (b > count) b = 0; } while (a !== 0); for (j = 0; j <= m; j++) // se salveaza solutia temporara in cea curenta box[j] = temp[j]; count = m; } var k = 0; for (i = 0; i <= count; i++) { //salvez solutia in lista kernel for (j = 0; j < k; j++) if ((Math.abs(box[i].lat - kernel[j].lat) < eps * 1000) && (Math.abs(box[i].lng - kernel[j].lng) < eps * 1000)) // pentru a evita duplicatele break; if (j === k) { kernel[k] = box[i]; k++; } } }